Bias-dependent photoresponsivity of multi-layer MoS2 phototransistors
نویسندگان
چکیده
We studied the variation of photoresponsivity in multi-layer MoS2 phototransistors as the applied bias changes. The photoresponse gain is attained when the photogenerated holes trapped in the MoS2 attract electrons from the source. Thus, the photoresponsivity can be controlled by the gate or drain bias. When the gate bias is below the threshold voltage, a small amount of electrons are diffused into the channel, due to large barrier between MoS2 and source electrode. In this regime, as the gate or drain bias increases, the barrier between the MoS2 channel and the source becomes lower and the number of electrons injected into the channel exponentially increases, resulting in an exponential increase in photoresponsivity. On the other hand, if the gate bias is above the threshold voltage, the photoresponsivity is affected by the carrier velocity rather than the barrier height because the drain current is limited by the carrier drift velocity. Hence, with an increase in drain bias, the carrier velocity increases linearly and becomes saturated due to carrier velocity saturation, and therefore, the photoresponsivity also increases linearly and becomes saturated.
منابع مشابه
Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers
Two-dimensional layered transition-metal dichalcogenides have attracted considerable interest for their unique layer-number-dependent properties. In particular, vertical integration of these two-dimensional crystals to form van der Waals heterostructures can open up a new dimension for the design of functional electronic and optoelectronic devices. Here we report the layer-number-dependent phot...
متن کاملTribotronic Enhanced Photoresponsivity of a MoS2 Phototransistor
Molybdenum disulfide (MoS2) has attracted a great attention as an excellent 2D material for future optoelectronic devices. Here, a novel MoS2 tribotronic phototransistor is developed by a conjunction of a MoS2 phototransistor and a triboelectric nanogenerator (TENG) in sliding mode. When an external friction layer produces a relative sliding on the device, the induced positive charges on the ba...
متن کاملPhotodiode-Like Behavior and Excellent Photoresponse of Vertical Si/Monolayer MoS2 Heterostructures
Monolayer transition metal dichalcogenides (TMDs) and their van der Waals heterostructures have been experimentally and theoretically demonstrated as potential candidates for photovoltaic and optoelectronic devices due to the suitable bandgap and excellent light absorption. In this work, we report the observation of photodiode behavior in (both n- and p- type) silicon/monolayer MoS2 vertical he...
متن کاملUltrasensitive photodetectors based on monolayer MoS<sub>2</sub>
Two-dimensional materials are an emerging class of new materials with a wide range of electrical properties and potential practical applications. Although graphene1 is the most wellstudied two-dimensional material, single layers of other materials, such as insulating BN (ref. 2) and semiconducting MoS2 (refs 3,4) or WSe2 (refs 5,6), are gaining increasing attention as promising gate insulators ...
متن کاملFlexible and Wavelength-Selective MoS2 Phototransistors with Monolithically Integrated Transmission Color Filters
Color-selective or wavelength-tunable capability is a crucial feature for two-dimensional (2-D) semiconducting material-based image sensor applications. Here, we report on flexible and wavelength-selective molybdenum disulfide (MoS2) phototransistors using monolithically integrated transmission Fabry-Perot (F-P) cavity filters. The fabricated multilayer MoS2 phototransistors on a polyarylate su...
متن کامل